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ABSTRACT

This repertis concerned with the approximation of acoustical noise
fields by the use of modulated pure tone sources. Given a specific random
signal the methods of orthogonal expansion and Fourier expansion are studied.
The integral equation arising from the orthogonal expansion is solved for
the normal functions when: a) the power spectrum is given as the ratio of
two polynomials, b) Markoff Autocorrelation function, c¢) stationary band
limited Gaussian white noise of mean zero, d) band limited stationary normal
white noise on a finite interval, e) white noise. Deterministic and random
frequency and amplitude modulation and random switching are examined as
ways to broaden spectral components.
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I. Introduction

Because of the many applications, it is found useful
to represent a random process in a suitable series of
particular functions over some finite or infinite interval.
Considerable study has been devoted to the problem of
expansions (Ref. 1,2,3). Orthogonal expansions have
received particular attention (Ref. 2).

The present report deels with some aspects of the
expansion of random functions into orthogonal series.
Consideration is also given to how to broaden the spectrum
of a single-tone signal by modulation of various sorts.
Some attention is also given to optimal approximations of
various statistical characteristics of actual random noise
fields.

Manuscript released by author October 7, 1964, for publication as
an RTD Technical Documentary Report.



II. Representation of Acoustic Noise Fields

a) Orthogonal Expansion of Random Functions

It is desired to represent a randomly varying sound
pressure p(t) (see yigure 1) as a series of orthogonal
functions with orthogonal random variables as coefficients.

K/»4V\//\VAV/”\ |

Figure 1, Typical Recording of Random Sound Field

P(t) 4

In particular, we require

p(t) -Z AR AR S (1)

l n=k
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3 *n(t)*k (t)at = b
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p(t) p*(t')vn(t') -Z LI L v (e (e Wo(t') XX
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Integrating both sides of this result from t= O to T and using
the second of (2), we find

jf p()p (¥, (¢)at' = Zk Il N 89, (%) X X
.z LIy (8) X%
L
Taking expection and using the first of (2) gives

T
l R(t,t')tn(t')dt' - |)‘n|2 tn(t)
o<t<T (3)
R(t,t') = E(p(t) p(t'))

Thus we can have such an expension as (2) provided ¥ _(t) are
solutions of (3) and A, is the eigenvalue associated with

v (8).

From (1) and (2) it follows that

1 [T
X = T’:r [ v (t) p(t)at (%)

Therefore if we knew the eigenfunctions ¥ _(t), and the
eigenvalues A , and possessed a realized value of p(t),
we could calculate the realized values of the orthogonal
random varisbles X . All that 1s needed to find A and
v (t) is the sutocorrelation function R(t,t'). This is
elther given or is determined from an actual recording
of p(t).

If p(t) is a gaussian random process, the random
variables will not only be orthogonal but will be
independent random variables with a normal probability
distribution. The problem of determining the probability
distribution function for p(t) when those of are given
is an extremely difficult one and has been solved only in
the case of gaussian variates. It is to be noted from (&)
that if p(t) is an independent process, X will be a
normal variate. One can easily prove this by application
of the central limit theorem of probability theory.

3



b) Fourier Expansion of Random Functions

Because of the difficulty of solving the integral equation
(3) and because of simplicity, random functions are expanded
into Fourier series in most practical situations. Unfortunately,
the random coefficients are not orthogonal on (0,T) except for
periodic processes. We can show, however, that the coefficients
are asymptotically orthogonal as the length of the recording
increases.

Consider a stationary random function p(t) defined on the
interval (0,T). The Fourier expension of this process on (o,T)
is

p(t) -Z {uk cos ukt + bk sin ukt], “w = lwo (5)

k=0
vhere
5
1 a&r
‘o - Tfp(t)dt, T-a
(6] °
> T
- - d k eece
& !l p(t) cos kuot tk=],2, (6)
T
2
b = —f P(t) sin kw t atk=1,2,...
k T - o
Now

E(aka‘] - % Effp(t)p(t‘) cos kpot cos luot'dtdt']
h v L} 1]
-2 ﬁ j: R(t-t') cos kuot cos mot dtdt

‘ L} L
= Fﬂ/: R(t) cos kuot cos luot dtdt

T = t-t'

Changing variables the double integral becomes

E{uka‘] - i—ﬁ cos momtﬁ‘t R(t) cos luo(bl—t)d't

Let A = t/T, then



1 ™(1-2)
T2 {sku ) = [ cos m[ R(z) cos 2"(--0- A) dr

1 N1-7)
- h[ cos 2nkAAA {cos 21rﬂ[r R(t) cos 2:" dr
(1-2)
- sin zlrn[’ R(t) sin 21;—” ar)

As Taw, A$0

= i
TE [gkn‘] -th cos 27kAdA {cos 2msA°* s S(u‘) +

(7
+ sin 2meA° (0) )

S(w,) = Spectral density of p(t) and w --——. “, +20a8s Tow
unless £ is chosen such that lim o uﬁo.
‘,T—’“

(7) may be evaluated to give

‘B[nka.‘} -.s(u‘) L (8)
The normalized & = VJZ;g, i = .‘,Lf;?>
obey

n[i‘ki‘] o Oy 21 (9)

In like manner one can show that
E[&s‘]-oo

E(E. 5.} -8
R k,8 > 1 (10)

E(iO;‘] - 801
E(‘OB‘] - 60‘

Thus the expansion coefficients are asymptotically orthogonal.



It is of value to compare various Fourier expansions for
different lengths of T of recordings of p(t) with the exact
orthogonal expansion on (0,T). This would give some idea of
the length of record to be taken so that a Fourier expansion
would be as good as the exmct one.

IZI. Solution of the Integral Equation Arising in the Orthogonal
Expansion of a Random Function.

8) General Results for Processes with Rational Spectral
Density Functions

We confine ourselves to stationary random sound fields whose
spectral density functions are rational functions of frequency.
In this case the integral equation becomes

T
[ R(t-t') vn(t')dt' = |)‘n|2*n(t), 0<t<T (11)

By the Wiener-Khintchine theorem, we know that
(]
R(<) -Z%I S(w) ei‘mdn

- (12)
S(w) --[ R(7) e-iwdf

S(w) is the power spectral density of the random sound pressure
P(t). We now suppose that S(w) is a ratiomal function of w so
that it can be written as the ratio of two Polynomials in w,

namely,
2
s(u) = 2L00)) (12)
D ((10)%)

D is at least one degree greater than N. The argument of the
N and D polynomials was chosen as a square of w because of the
general requirements placed on S(w) as a power spectral density
function. We wish to show that when the process has such a
spectral density as (13), the functions Yin('l:) satisfy a linear
constant coefficient differential equation.

We start by inserting (13) into (3) to obtain

6




=i I Ml sy, Qe )amatr = |3 By () (14)

o (10)%)
/2
W(1w)) = ) b (1)
k=0
p/2 P>q (15)

(1)) = Zb 8 (1)

and b are constants. Now operate upon both sides of (1%)
th the operator

2 / 2k
2 '— to give
k=0
(16)
-“—’-’ o((1)))e N (61)atra
D((1)?)
2

- |7\ | D{—tz] v (t)

Multiplying by lI((iu) ) under the integral f is equivalent to
operating on the integral with N{?] Thus (16) can be
written as

4 e
= j; (N (5) _[ o0 v (6)a

\ (n)
- In 1® ozh_(v)
But
f i 8(t-t') (18)

-00



where 5(t-t') is the Dirac delta function. Using (18) in (17),
we find

2 T 2
n%_a} [ B(t-t') ¥_(t')at = l>\ml2 D{:?} v ()
or
d2 2 d2
N(z) v, (¢) = [\ |7 D) v, (%) (19)

This is the basic differential equation that must be satisfied
by the expansion functions vn(t).

The solution of (19) will contain A and p arbitrary
constents A . When $his solution is substituted back in the
integral equation (11), it will be seen that the integral equation
cannot be satisfied except for certain values of )‘n’ the
characteristic values, and the constants A = must satisfy certain
conditions. These conditions show that for each n there is only
one independent constant. This one constant is to be determined
from the normalizing conditions on tn(t) , namely,

>
[ vatorv; wae = (5 - (20)

(o}

The procedure just outlined will now be carried out explicitly.
The differential equation (19) becomes

V2 ) WE Py (t)
N I LA R
k=0 o k=O

Try a solution

v () =a ehn’ (22)

An is & constant and @ is a parameter. Putting (22) in (21)
we find thatﬂnmustb.oroot of



q/2 p/2

2k 2 2k
Z bo = lxnl Z a8 (23)
k=0 k=0

This equation will have, in general (special situations can be
taken care of), proots + @ . =+ 0a _(A), k = 1,..,p/2. Half

of the roots are simply the negatives ol the other half. A
general solution of (21) is then

p/2
v (%) = Z [A:k e ux® 4 A;k e %) (2%)
kwl
The autocorrelation function is given by
1 “B((1)°) 17w
e) -5 [ BLLL i, (5)
D((iw)")

This integral can be evaluated by contour integration using
semicircular arcs and yields

p/2
z Bkemk' T = t-t'>0
kml
R(r) = ¢ P/2 (26)
-iw T
Z Bke k <0
ki

ukaretherootsor

p((1w)%) = 0 (27)

lyingintheupperhu.fortbecmplexplaneasshovnin
Figure 2
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2
Figure 2, Location of the Roots of D((iw)")

There are p roots of (27) + W, k=l eeey D/2. The
B, are given by

k
w((10)°)
N & (28)
gsiu! !
dw W= W

k

Inserting (24) and (26) into (11), we obtain

" p/2 p/2
f Z) B, ei"’s(t't ) ;{A:k ouk’ + A;k B ) at' +

0

/2 p/2
+ f Z 133"””:;“"t )Zl {A:k sk A;e-%kt'] at!
t B=l
p/2

. o= =i
. IX”IZZ:‘ W k4 A e k)
¥
10



Carrying out the integrations we obtain

'A“IZZ wh Pty g ot

This equation can be satisfied identically in t only if the
sum of the coefficients of the different functions of time
are equated to zero. This gives the system

/2 + -
A A
Z ; nk nk
.ank-m. ’

p/2 o (Oni + 1uwg)T A~ e{-fnk + 1ug)T

(v) 2 B( PR j o
n + 10. -(3nk +1u.

p/a B = l,...,p/2 (29)

(e) Zl P o S - In P

k= l’ooo,p/z



p/2

p

- 1
), ¢
=0 - ank'“l

Equations (29s) and (29b) are s system or P nnea.r homogeneous
For a non-

- iw
an'.-

]n -|7~|

nk,

k

equations for the determination of the A and A
trivial solution, the determinant of the coem

namely,

From this equation we determine the eigenvalues ?\n, n=12...

1’.'.,p/2

eeoe -1 "1 LN
Qn‘-l- 101 in+ 101
"1 eeco
an‘+ wl
e(n e wo)r .. a(-am + duw)T
Qﬂ-l- iul -au-l- h!l

This requires that we kmow the functions

Q. = fk()\n)

nk

These functions rk(x ) are determined by solving for the roots
of (23) in terms of
of algebraic runctions for equations of fourth or lower degree.
This would mean that problems could in principle be handled for
D((1w)2) of eighth or lower degrees.

We can do this analytically in terms

ciﬁnu must vanish,

(30)

(31)



Equations (29¢c) and (29d) will be found to be identically
satisfied. All constants A"!'k, kel, .. p/2=1, Agir & = 1,000,
P/2 can be solved for in terms of A',',',/g using equations (29a) and
(29v). Anp/a is determined from the normalizing condition

T *
[ vatew, (0rae =2 (52)
[}

The case where the power spectral density is a rational
function of frequency is a very important one and covers a
wide range of practical cases.

b) Orthogonal Expeansion of Processes with Markoff
Autocorrelation Functions

Suppose that the autocorrelation function of a stationary
random acoustic noise process p(t) of mean zero is given by

E {p(t) p(t H)) = R(T) = A e-al‘rl

(33)
A = E(p°(t)) = R(0), P = constant
This function is shown in Figure 3.
R(‘t)‘
A
0 —— T

Figure 3. Graph of the Autocorrelation Function Ae'e 'TI



The spectral density corresponding to (33) is

s(e) = [a oBlTl - 28 (34)
-‘[ ~(1w)%4p?

This function is plotted in Figure k.
S(‘-’)‘

24/B

0

Figure 4. Spectral Density Fumction of a Process with Markoff
Autocorrelation Function

From (5&), we see that the process under consideration has a
rational spectral density function with

N((10)?) = 2pA

(35)
D((1)%) = ~(10)° + p°
The differential equation (19) becomes in this case
2 fb 2
28y _(t) = Ixnl Es 2 +8v ] (36)
Let
T g O (37)

n 2
I

Then (36) can be written as

1k



2
o O S (38)
dt2 nn

Ir 62< %Tz, then (38) has solution
n

7in(t) " :nei'“nt + bne-mnt ) @ > 0. (39)

L and bn are arbitrary constants. Substituting (33) into
the integral equation (11), we find

t e ™5 2
Je v (t)atr +Afe‘v (t)at' = | |3 (8), 7 = t-t’
b n s n n n

Using (39) and carrying out the integrations gives

iwt Bt -iwt -8t
As — =t + A . = +
B+ dw B - e
. eﬂ(t-'l') + 1w T . o ea(t-r) - 1w, T - -lapt i
n - + 1un n - - hbn

IA |2 ae™® & a2 p e Mt
n n n

This equation is identically satisfied in t if

As Aa
n

- = |A
B'i-:l.ﬁ»n -5+mn n

(40)

Ab Ab
n n

B-iun S - iw




= 0
B+ w B - w
. .(-e + mn)r m’ne-(;a + :u-n)x'
- 0
- + wn g + un

The first two conditions in (40) are identically satisfied. The
second two are two linear homogeneous equations for "n and bn'
For a nontrivial solution, we require

1 1
B+ h'n B - :I.mn
=0 (k1)
‘(-e + 1un)‘! _e-(e - :u.n)r
A + wn B + :lun
This reduces to
1 1
“n cos Eunr-fﬁ -mzun'r- 0
(42)

2
e e
n

Equation (42) determines the eigenvalues )‘n' It is clearly
a complicated equation and must be solved numerically.

From (40)

.

B+ 1w (43)

Therefore



5 (44)
= B%}n (w cos wt+p sinwt)

From the normalizing condition we find

2 r -1
2 g+ iw 2
|gn| - -—-2 , {[ Iun cos unt + B sin untl dat) (45)

The orthogonal expansion of p(t) now takes the form

IA Ic
p(t) Z (un cos @ t + p sin ant] xn (46)

Thexne-onlybe determined vhen a realized value of p(t)
is given. This in principle completes the problem.

¢) Other Methods for Solving the Integral Equation

Another method of solving the integral equation (11) much
used by physicists is to expand the kernel R(t-t') into a suit-
able set of orthornormal functions. By this means the problem
can be reduced to the problem of finding the non-zero roots of
an infinite determinant. By judicious choice of the expansion
this process can be made tractable. (Ref. 5.)

d) Other Solutions

1. Stationary Band Limited Geussian White Noise of
Mean Zero (Ret . )

The expansion interval in -e S t <o . The autocorrelation
function for the process is

2\ sin 21Bt
G ST,
and is shown in Figure 5.

R(x) = T = t-t' (47)

17



<PhH |

T U

Figure 5. Autocorrelation Fumction of Band Limited White Noise

B= o-ulistheb.ndwidthorthenoise. The spectral density

appears as in Figure 6.

Sw) |

+s,

- w‘ - w, o wl wl
Figure 6. Speetral Density of Band Limited White Noise

Note that <p2>- SOB. The proper functions for the expamsion of
p(t) on the interval (-e, ») are found to be

v (t) =25 Sin2r(t - u/2p) (48)
2mB(t - n/2B)

18



{tn] is an orthonormal set but ¥ are not solutions of Eq. 1.
The expansion takes the.fom

p(t) = M) -1 sin BrB(t - n/2B) X (49)
Z- 21B(t - n/2B)
wvhere
-l ™
X_ = 2B (KP>) Ip(t) PR OBERL (50)
27B(t-n/2B)
2. Band Limited Stationary Normal White Noise on a

Finite Interval. (Ref.6.)

The correlation function is still of the form (47), but the
expension is desired on the interval (0,T). The proper functions
and eigenvalues are

1) (rmm, 2/%(t-1)]

v () = = — y 0St<T
an
2 (1) 2
A = <P >![Rm (»2, 1)] (51)
. n.2
(‘:\ )

l'on"'zz 23 + 1
J

Rn‘(c,r) and Sn‘(c, cos 0) are reppectively, the prolate
spheroidal Bessel function and prolate spheroidal Legendre
function as given by Morse and Feshbach (Ref. 5). These

functions have been tabulated. The expansion reads

p(t) -ZJl—n ¥ () X,0<t<T

T (52)
X = Ti‘; [ p(t) ¥_(t)at

19



xn are independent normal variates of mean zero.

3. White Noise
Correlation and Spectral demsity functions are

R(t) = sob('r)

8(w) = 5_ (53)

So is a constant. The integral egquation in this case becomes

T
{ ] ’ ! 2
f 5 8(t-t') ¥ _(t1)av = | %y (¥)

or 2
s ¥, (t) = [ ¥ (¥)

This can be satisfied by any orthonormal set of functions if
we take )n -~f8° for all n. The expansion becomes

p(t) -JSOZvn(t) X
(5%)

. T
. e [ p(t) v _(t)at
(+}

The results for white noise are very interesting and
potentially very useful. We can make the general statement

that very broad band random signals can always be approximately
expanded into orthogonal series using any suitable set of
orthonormal functions.

IV. Methods of Approximating Acoustic Noise Fields

a) Optimal Approximation Techniques

Once A and ¥ (t) are determined from solving the integral
equation, can obtained when a typical recording p(t) is

a . nWe get a set of realized values for the Xn. The
series ).ntn( t) = p(t) is then an analytic representation of
the realized function p(t). The sirens could be used to try

‘o simulate this series or the typical recording.
20



In general, vhen we have an analytic expression for p(t), we
need a synthesis procedure to approximate p(t) with the sirens.
We might try to spproximate p(t) itself in the time domain by
requiring the mean square difference between the sirens' output
zl;k(t) and p(t) to be a minimm. This requirement is achieved
by minimizing

T o
% [ [p(t) -Zpk(t)ladt -

with respect to the adjustable parameters of the sirens such as
center uencies, amplitude of outputs, percent modulation etc.
lLet ki(k be a parameter of the kth siren, then this synthesis

procedure requires

(55)

k = 1,2’..., n

N
a_rT 2
5[ ) pieaneeao (56)
a)‘jk ‘[ =1 i = 1 . L

N is the number of sirens and is the number of adjustable
parameters of the kR giren. (56) leads to a system of equations
for the optimizing perameters. Unfortunately, the system is
nonlinear in the parameters in almost all cases and it is difficult
to solve even with digital computers. Here we try to optimally
synthesize one realized value of p(t). Since p(t) is a sample
function from a random process, it may be better to approximate
some statistical characteristics of the process.

Other synthesis criteria might be:

1. Minimize mean square difference between power spectral
density of p(t) and that orz pk(t).

2. Optimize probability den;it.y of p(t).
b g
3. Minimize % x{'[ [p(t) -Zpk(t)ladt}
k=l

with respect to the parameters of the sirens. We assume here that
some of the parameters of sirens are random in character.

b) Spectral Broadening of a Single-Tone Siren.

21



Spectral broadening of a single-tone siren can be achieved
by various forms of modulation or by switching techniques. ILet
us consider first spectral broadening by modulation.

1. Amplitude Modulation (Deterministic)

A single-tone siren output may be represented by

P(t) = & cos (w t + @) (57)

vhere A is the amplitude of the output, w 1is the center fre-
quency of the siren, and ¢ is & phase angle. Such a siren output
a8 (57) contains only one spectral component. Suppose by some
means we are able to vary A as a function of time. In particular,
let

AeA(t) = Ao(l + A cos unt) (58)

Ao, A, and u! are constants
Then (57) reads

. ot . Cer / ) o
o) D « - 2

p(t) = Ao(l + A cos unt) cos (uct + 9) (59)
or
p(t) = Ao con(uct + @)+ -;'-AOA cos [(mc - u.)t + 9] +

(60)

+;§ A A cos [(uc - "’n) t+ 9]

By this modulation, we see that p(t) now has three spectral
components. It is easy to see that if

p(t) = AOZ (1 + o cos u‘kt) cos (uct +9) (61)
k=1

p(t) will have 2N + 1 spectral components. Equation (61) includes
a wide variety of amplitude modulation such as arbitrary periodic
modulation and almost periodic modulation. We note, however, that
a8 long as A(t) is a deterministic function of time the spectrum
is discrete.
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2. Frequency Modulation (Deterministic)

mmmwmqmqudeﬁmdu

w(t) « :—t (uf+ o(t)) (6e)

where the phase angle ¢ is now considered a function of time.

Ifhv;rytbemqunqbyauuhtm,ﬁcumutmt
takes the form

p(t) = Ao co.[uct + .L sin u-t] (63)

A and 0. are constants

Itunllknavnttntthilcanbcmtmmmron

1 i
P(t) = > A, cos uct +3 A°;

+ cos (ue - nu.)t]

[1# 2™ .rn(:—‘ ) (oos (w t + m )t

m
(6%)

from which we see thtthenmaninﬁnitcmn‘berofmmb
spectral components. JnCES~) is the Bessel function of the first
kind of order n. The gemefal appearance of the intensity spectra
of p(t) for small, intermediate, and large values of A /w  are
shown in Figure 7 with their envelopes. =

I(w) *

Figure 7. Intensity Spectra of a Single-Tone FM Acoustic Noise Pressure
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For arbitrary periodic or almost periodic frequency modulation,
the siren output is given by

N
p(t) = Ao cos [act +z = sin u‘kt] (65)
kel mk

Akandankmconltantl.

The number of sidebands increases tremendously as N increases,
but the intensity spectrum is still discrete. Only for an
aperiodic modulating wave can we obtain & continuous intensity
spectrm or spectral density.

3.) Auplityde Modwlstion (Random)

Continuous spectral broadening of a single-tone siren can be
achieved through random modulation. Consider

p(t) = Ao[l + A Pn(t)] cos uct (66)

where Pu(t) is a stationary normal random process and Ao, A, and

w, are constants. The spectral density of p(t) for a modulating
noise with spectral density function given by

R/
- 6
8, (w) =8 e % (67)
8 and w = constants
o b
is shown in Figure 8 for various modulation indices.
It is seen that spectral borsdening can be quite considerable.
Note that finite energy is in the carrier for all modulation indices.

shown.

4,) Frequency Modulation (Random)

In this case we have
p(t) = Ao cos [uct + Pu(t)] (68)

vhere Pn(t) is a stationary normal random process. Ao and “c are

consdaat. The spectrum of p(t) for Pn(t) taken to have spectral
density

2
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If u <<, thespccmldcmityilnrymsbont uc

¢little broadening). For very large values of u, the
spectral density is breaed about “.

5.) Spectral Brosdening by Random Switching

Consider a stationary noise pressure of the type shown in
Figure 10.

N(t)

Figure 10. Random Square Wave

The zero crossings occur at purely random instants to,t gecese
Such an output would be produced (except for a carrier %‘l‘l
cos uct) by an ideal siren that was being switched on and off
at purely random times. The spectral density function of the
pressure in Figure 10 is

2
T A
8 (w) == (70)
T ae(g)

when ty,7-t{ is & Poisson distributed random varisble.
If we use N(t) as an amplitude modulation function of & single-
tone siren output, we have the sound pressure

P(t) = N(t) cos [wt + @] (71)

¢ is a random phase umiformly distributed between o and 2v.
The sutocorrelation function of p(t) is
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Rp = E(N(t) cos [uct + 9] * Nt + 1) cos [uc(t +7)+ 0]} (72

2r
Bp » E(N(t) N(t + 1)) %[ca [uct + @] cos [uc(-t+ t) +9 ] dp

Rp(r) - % % (t) cos “s

The spectral density is obtained by use of the Wiéner-Kintchine
theorem. We find

Sp(u) -f Rp(t) e-m.h'r

sp(“) = % I [e"(“c)'i-i- e'(“ “c)'s Rl(‘r)dt (73)

5 (o) = % (3,(0s) + 8 (6 +u))



V. Conclusioms and Reconmendations for Further Study

The energy of a single-tone siren can be spread over a fairly
large frequency band about the center frequency of the siren by
various sorts of modulation. The most effective way of spreading
the sound energy over the frequency band is by random smplitude
or frequency modulation.

A given acoustic noise field may be approximated (in spectral
density) by centering the sirens' center frequency at those vhich
constitute the given signal or by dividing the spectral density
of the given signal into equal energy bands and assigning an energy
band to each siren. The approximation can be improved by smplitude
and frequency modulating each siren. Approximation of a given
acoustic noise field in some optimal way leads to the solution
of a system of non-linear equations.

Further work may be carried out to find other solutions to
the integpal equation occurring in the Ksrhunen-w expansion
of the random noise field. It would be particularly desirable
to £ind some exact solution so that the proper expansions could
be compared with a Fourier expansion of the field. Another
direction in which a continued investigation might bear fruit is
that of tiying todevise methods of solving the nonlinear equations
arising in trying to optimally approximate some characteristic of
the given acoustic noise field with the sirens. Still another
area worth looking into further is spectral broadening by randomi-
zation of the sirens' prameters.
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